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Overview

• Image compression features
• Principles of image compression
• Transform coding
• Wavelet image transforms
• Properties of image wavelet coefficients
• Efficient coding wavelet coefficients
• Zerotrees and set partitioning
• Application issues
• Conclusions
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Image Compression Standards

• Good old times: JPEG
– Choose quality number
– Compress image
– Other features proposed, but most not widely supported

• New standard: JPEG 2000
– Based on HP Labs proposal
– Wavelet-based compression
– MANY new features
– Complex file structure, coding, decoding, etc.
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Image Types

     “Natural”    Graphics Black & White
wavelets, JPEG         GIF            fax
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Progressive Resolution

compressed file
begin end



© Copyright 1999 by Amir Said, All rights reserved

Progressive Quality

compressed file
begin end
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Random Access

compressed file
begin end
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Desirable Compression Features

• Scalability
– same algorithm for wide range of quality, compression ratios

• Flexibility/adaptability
– efficient compression on wide range of image characteristics

• Automatic rate and quality control
– one-pass creation of compressed file with desired size or quality

• Same algorithm for lossy and lossless compression
• Support for Region-of-Interest (ROI) decoding
• Low complexity (speed, memory)
• Efficient compression
• Error resilience
• Good visual quality
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Image Compression

• Based on the elimination of data that is
1. Redundant
2. Irrelevant

• Redundancy is reduced by using more efficient
representation
– lossless process
– entropy-coding

• Irrelevant data is discarded
– lossy process
– depends on image use

• subjective visual quality
• maximum error
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Entropy Coding

• Standard coding techniques
– Huffman codes (good compression, fast)

– Arithmetic codes (better compression, slower)

– Lempel-Ziv (not so good)

• Techniques specialized for images
– Exploit two-dimensional structure

• Example: code large single-color square by identifying
(origin, size, color)

– Use properties that are present in normal images
– Exploit structures on different scales
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Quantization

• Reduction of allowable images to a much smaller set
– Example: set least significant bit in pixel values to zero

• The new set should contain most important cases
– Difference should be the irrelevant data

• Quantization is tightly connected to entropy coding
– Smaller number of possible outcomes means less bits

• Scalar quantization

Where d is the quantization factor
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Visual Properties

• Simple quantization

• Same + “error shaping”

divide &
truncate

encoding decoding multiply
image

recovered
image

divide &
truncate

image

encoding decoding multiply

recovered
image

add random
data on [0,d)

subtract same
random data
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Quantized Image
Lena image after setting 4 least significant bits to zero (direct 2:1 compression)
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Quantized Image
Lena image after removing 4 least significant bits (2:1) + dithered quantization
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Vector Quantization

• Exploit clustered data

• More efficient “sphere packing”

• Real advantage for image compression unproved

medians

rectangular grid hexagonal grid
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Transform Coding

• New block

• Example: 8 x 8 discrete cosine transform (DCT)

linear
transform

image
(variable)

quantization
entropy
coding

compressed
file

( )[ ] ( )[ ]16/12cos16/12cos
2
1 7

0

7

0
,,

ππ jnim
i j

jinm pT ++= ∑ ∑
= =



© Copyright 1999 by Amir Said, All rights reserved

Properties of Transform Coding

• Unitary transform: MSE conservation
• Energy compaction

– Easier, more efficient entropy coding

• Good error shaping
– Inverse transform greatly reduces quantization artifacts

• Clustering vector quantization less effective
• Small “sphere-packing” gains
• Block-based transform yields

– Blocking artifacts
– Potentially worse compression

DC
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Blocking Artifacts
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Haar Transform

• Definition for one-dimensional array

• Recursive computation
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Multiresolution Transforms

• Two-dimensional computation

• Properties
– Can exploit structures on several scales (large, small)
– Hierarchical decomposition - progressive transmission
– Good energy compaction
– Preliminary classification for entropy coding (subbands)
– Haar transform produces blocking artifacts

...

rows transformed columns  transformed multiresolution pyramid
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1st stage
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2nd stage
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5th stage
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Overlapping Kernels

• One formula for overlapping multiresolution transform

• Inverse transform
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Matrix Formulation

• Example: 10 samples, cyclic convolution, 5/3 filters

I
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The “Lifting” Technique
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Properties of Wavelet Coefficients

• Residual correlation too small for any practical use
• Different distribution on different parts (subbands)
• Stationary assumption quite unrealistic
• Most coefficient are zero after quantization
• Distribution somehow replicated on resolution hierarchy
• Variable quantization needs to be addressed (bit allocation)

• What is the best coding method for wavelet coefficients?
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Zerotrees and Set Partitioning

• Some efficient methods for coding wavelet coefficients

– A.S. Lewis & g. Knowles (1991) - first to use, for efficient coding,
trees defined on the multiresolution pyramid

– J.M. Shapiro (1992) - EZW (embedded zerotrees of wavelets) -
developed method of progressive refinement for fully embedded
coding, used efficient entropy-coding

– A. Said & W.A. Pearlman (1993) - SPIHT (set partitioning in
hierarchical trees) - more efficient coding, generalization of set-
partitioning, equivalence to sorting, lossless compression, public
domain demos
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Significance Trees

• Sets of insignificant coefficients
– All magnitudes smaller than a threshold
– “Zerotrees” when sets are defined as trees

• Spatial orientation trees
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Basic Algorithm Ideas

• Use one bit to indicate if all wavelet coefficients in a tree are
zero
– If all zero, nothing else to do
– If not

• Subdivide tree in several (4) parts
• Apply same test to new parts

• Repeat until all nonzero coefficients found
– Apply simple entropy-coding to nonzero coefficients
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Set-partitioning Properties

• Very simple entropy coding (mostly partitioning data)
• No explicit bit allocation
• Only simple scalar  (uniform) quantization used
• Low encoding complexity
• Very efficient decoding

• Best compression when first published
• Efficient compression from high rates up to lossless recovery
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Wavelets & SPIHT: compressed 50:1
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Baseline JPEG: compressed 45:1
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original Wavelet & SPIHT: compressed 100:1
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original Wavelet & SPIHT: compressed 50:1
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Bit-plane Coding

• Progressive coding of wavelet coefficients

sign bit

magnitude bits
msb

lsb
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Lessons Learned

• Most important problem: efficient coding of the location of
zero coefficients

• Vector quantization, optimal bit allocation hardly necessary

• Exploits spatial clustering of magnitude distribution

• Efficient entropy coding does not have to be complex

• Multiresolution properties can be effectively exploited
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Application Issues - I

• Complexity of the transform
– DCT

• O(log(b)) operations per pixel, b = block size
• Inverse transform frequently skipped or simplified
• All block data on L1 cache
• Efficient hardware implementations

– Wavelet
• O(t) operations per pixel, t = average kernel size
• Inverse transform = smoothing, cannot be skipped
• Lifting reduces the number of operations
• Bandwidth may be more important than number of operations
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Application Issues - II

• Memory usage
– DCT

• Minimum b·b block
• Commonly width·b

– Wavelet
• Simplest implementation: full image

– “Rolling wavelet”
• Minimum k·t (typical k = 8)
• Commonly width·k·t

– Fully embedded coding
• Must keep full image buffered or compressed image buffered
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Application Issues - III

• Quantization & entropy-coding complexity
– Basically independent of the image transforms

• Compression efficiency & visual appearance
– Wavelets do yield best results
– Poor visual quality due to obsession with MSE

• Versatility
– Wavelets naturally support progressive resolution
– Easy combination of lossy and lossless compression
– Efficient methods for embedded coding
– Region-of-interest modes supported
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Application Issues - IV

• Error resiliency
– Very complicated problem

• Protocols
• Error propagation
• Error detection and error correction

– Hierarchical structure allows sorting data by importance, for
unequal error protection

– Simple entropy-coding allows identification of bits that do not
lead to catastrophic error propagation

– Overlapping kernels produce smooth error artifacts
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Conclusions

• Wavelet transform has several features required for
effective image compression
– Error shaping yield good visual quality
– Efficient energy compaction
– Can exploit image features in several scales

• Its structure allows
– Easy implementation of progressive transmission and

multiresolution
– More efficient compression
– Better error resiliency

• Not all application issues solved, but significant progress
recently



© Copyright 1999 by Amir Said, All rights reserved

Wavelet & Image Compression Links

• http://www.cipr.rpi.edu/research/SPIHT/EE_Forum.pdf
• http://www.cipr.rpi.edu/research/SPIHT/
• http://www.cipr.rpi.edu/research/SPIHT/spiht8.html
• http://www.wavelet.org/wavelet/index.html
• http://www.code.ucsd.edu/~jkrogers/Papers/
• http://cm.bell-labs.com/who/wim/papers/papers.html#iciam95
• http://cm.bell-labs.com/who/wim/papers/papers.html
• http://www.mat.sbg.ac.at/~uhl/wav.html
• http://www.jpeg.org
• http://www.cis.ohio-state.edu/hypertext/faq/usenet/compression-faq/top.html

• http://www.mathsoft.com/wavelets.html
• http://biron.usc.edu/~chrysafi/Publications.html


